Role of Map4k4 in Skeletal Muscle Differentiation: A Dissertation

نویسندگان

  • Mengxi Wang
  • MENGXI WANG
  • Anthony Imbalzano
  • Fumihiko Urano
  • Myriam Aouadi
چکیده

Skeletal muscle is a complicated and heterogeneous striated muscle tissue that serves critical mechanical and metabolic functions in the organism. The process of generating skeletal muscle, myogenesis, is elaborately coordinated by members of the protein kinase family, which transmit diverse signals initiated by extracellular stimuli to myogenic transcriptional hierarchy in muscle cells. Mitogen-activated protein kinases (MAPKs) including p38 MAPK, c-Jun N terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) are components of serine/threonine protein kinase cascades that play important roles in skeletal muscle differentiation. The exploration of MAPK upstream kinases identified mitogen activated protein kinase kinase kinase kinase 4 (MAP4K4), a serine/threonine protein kinase that modulates p38 MAPK, JNK and ERK activities in multiple cell lines. Our lab further discovered that Map4k4 regulates peroxisome proliferator-activated receptor γ (PPARγ) translation in cultured adipocytes through inactivating mammalian target of rapamycin (mTOR), which controls skeletal muscle differentiation and hypotrophy in kinase-dependent and -independent manners. These findings suggest potential involvement of Map4k4 in skeletal myogenesis. Therefore, for the first part of my thesis, I characterize the role of Map4k4 in skeletal muscle differentiation in cultured muscle cells. Here I show that Map4k4 functions as a myogenic suppressor mainly at the early stage of skeletal myogenesis with a moderate effect on myoblast fusion during late-stage muscle differentiation. In agreement, Map4k4 expression and protein kinase activity are declined with myogenic differentiation. The

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Map4k4 as a novel suppressor of skeletal muscle differentiation.

Myoblast differentiation into mature myotubes is a critical step in the development and repair of human skeletal muscle. Here we show that small interfering RNA (siRNA)-based silencing of the Ste20-like mitogen-activated protein 4 kinase 4 (Map4k4) in C2C12 myoblasts markedly enhances expression of myogenic differentiation genes, myoblast fusion, and myotube diameter. In contrast, adenovirus-me...

متن کامل

Inducible Deletion of Protein Kinase Map4k4 in Obese Mice Improves Insulin Sensitivity in Liver and Adipose Tissues.

Studies in vitro suggest that mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) attenuates insulin signaling, but confirmation in vivo is lacking since Map4k4 knockout is lethal during embryogenesis. We thus generated mice with floxed Map4k4 alleles and a tamoxifen-inducible Cre/ERT2 recombinase under the control of the ubiquitin C promoter to induce whole-body Map4k4 deletion af...

متن کامل

siRNA-Mediated Reduction of Inhibitor of Nuclear Factor-κB Kinase Prevents Tumor Necrosis Factor-α–Induced Insulin Resistance in Human Skeletal Muscle

OBJECTIVE Proinflammatory cytokines contribute to systemic low-grade inflammation and insulin resistance. Tumor necrosis factor (TNF)-alpha impedes insulin signaling in insulin target tissues. We determined the role of inhibitor of nuclear factor-kappaB kinase (IKK)beta in TNF-alpha-induced impairments in insulin signaling and glucose metabolism in skeletal muscle. RESEARCH DESIGN AND METHODS...

متن کامل

An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARgamma, adipogenesis, and insulin-responsive hexose transport.

The insulin-regulated glucose transporter GLUT4 is a key modulator of whole body glucose homeostasis, and its selective loss in adipose tissue or skeletal muscle causes insulin resistance and diabetes. Here we report an RNA interference-based screen of protein kinases expressed in adipocytes and identify four negative regulators of insulin-responsive glucose transport: the protein kinases PCTAI...

متن کامل

Ursolic Acid Improve Skeletal Muscle Hypertrophy by Increasing of PAX7, Myod and Myogenin Expression and Satellite Cells Proliferation in Native Broiler Chickens

Ursolic acid (UA) is known as a naturally occurring triterpene pentacyclic compound in some medicinal herbs including savory that affects the skeletal muscle. In the current study, the effect of UA was evaluated on C2C12 cells and satellite cells (SCs) isolated from native broiler chicks. First in the in vitro experiment, the C2C12 cell line obtained from the Stem Cell Technology Research Cente...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015